Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Platinum complexes of oxopurines: cis-bis(theophyllinato- N^{7})bis(triphenylphosphine)platinum(II) and cis-chloro(theobrominato- N^{1})bis(triphenylphosphine)platinum(II) ethanol hemisolvate

Erich Dubler, Helmut W. Schmalle,* Frédéric Arod and Alain Schneider

Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
Correspondence e-mail: schmalle@aci.unizh.ch

Received 13 September 2001
Accepted 28 November 2001
Online 23 January 2002
The syntheses and structures of two mixed-ligand complexes of platinum(II) with deprotonated oxopurine bases and triphenylphosphine are reported, namely the theophyllinate complex cis-bis(1,2,3,6-tetrahydro-1,3-dimethylpurine-2,6-dionato- κN^{7}) bis(triphenylphosphine- κP) platinum (II), $\left[\mathrm{Pt}\left(\mathrm{C}_{7}-\right.\right.$ $\left.\mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}$], (I), and the theobrominate complex cis-chloro(1,2,3,6-tetrahydro-3,7-dimethylpurine-2,6-dionatoκN^{1})bis(triphenylphosphine- κP)platinum(II) ethanol hemisolvate, $\left[\mathrm{PtCl}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right] \cdot 0.5 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, (II). In (I), the coordination geometry of Pt is square planar, formed by the two coordinating N atoms of the theophyllinate anions in a cis arrangement and two P atoms from the triphenylphosphine groups. In (II), there are two crystallographically independent molecules. They both exhibit a square-planar coordination geometry around Pt involving one Cl atom, the coordinating N atom of the theobrominate anion and two P atoms from the triphenylphosphine groups. The two triphenylphosphine groups are arranged in a cis configuration in both structures. The heterocyclic rings are rotated with respect to the coordination plane of the metal by 82.99 (8) and 88.09 (8) ${ }^{\circ}$ in complex (I), and by 85.91 (16) and 88.14 (18) ${ }^{\circ}$ in complex (II). Both structures are stabilized by intramolecular stacking interactions involving the purine rings and the phenyl rings of adjacent triphenylphosphine moieties.

Comment

Transition metal complexes of nucleobase derivatives may serve as models for the coordination of metals to nucleic acids. The methylated oxopurines theophylline and theobromine are of additional interest in view of their pharmacological properties. Theophylline exhibits anti-asthmatic effects, theobromine is in current clinical use as a vasodilator and a
bronchodilator, and both oxopurines are also used as cardiac stimulants or muscle relaxants. Pt complexes of these oxopurines may be worthy of additional attention because of the potential antitumour activity of such complexes (Bloemink \& Reedijk, 1996; Whitehead \& Lippard, 1996). Here, we report the synthesis and structure of two molecular platinum(II) complexes involving triphenylphosphine and the anions of theophylline (TP) and theobromine (TB) as ligands, respectively, namely cis-[$\left.\mathrm{Pt}\left(\mathrm{TP}^{-}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, (I), and cis-$\left[\mathrm{PtCl}\left(\mathrm{TB}^{-}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{EtOH}$, (II).

(I)

$\cdot 0.5 \mathrm{EtOH}$

In metal complexes synthesized in non-alkaline media, theophylline binds as a neutral ligand, whereas complexes crystallized from alkaline solutions show the presence of theophyllinate anions (Madarasz et al., 2000), usually deprotonated at N 7 , the atom where the H atom is located in the crystal structure of neutral theophylline (Ebisuzaki et al., 1997), and single-crystal data for many metal complexes prove that theophylline moieties are normally bonded to the metal centre through N7 (Madarasz et al., 2000). There are, however, some rare examples of other coordination modes of unsubstituted theophylline or theophyllinate anions. N7 coordination including a balanced metal-O6 chelation has been found in a titanium cyclopentadienyl complex, with a $\mathrm{Ti}-\mathrm{O} 6$ distance of $2.28 \AA$ (Cozak et al., 1986), whereas some weak N7/O6-chelating interactions have been established, for example, in copper(II) complexes, with a $\mathrm{Cu}-\mathrm{O} 6$ distance of $2.92 \AA$ (Szalda et al., 1976) or $3.34 \AA$ (Kistenmacher et al., 1978; Madarasz et al., 2000). N9 coordination of theophyllinate anions, in spite of steric hindrance by the neighbouring methyl group at N3, has been established in a dimeric rhodium(II) complex (Aoki \& Yamazaki, 1980), whereas neutral theophylline also bonds through N9 in a chloroplatinum(II) complex (Griffith \& Amma, 1979). N7/N9 bridging theophyllinate anions, including a weak $\mathrm{Pt}-\mathrm{O} 6$ interaction of $2.34 \AA$, have been observed in a hexameric trimethylplatinum complex (Lorberth et al., 1988). Finally, in a mixed-ligand $\mathrm{Pd}^{\mathrm{II}}$ complex, theophyllinate anions are linked to the metal through C8 (Romerosa et al., 1997).

The molecular structure of (I) is shown in Fig. 1. Two theophyllinate monoanions coordinate to $\mathrm{Pt}^{\mathrm{II}}$ via the N 7 atoms. Compound (I) exhibits a slightly distorted squareplanar coordination geometry around Pt , with two N 7 -coordinating theophyllinate anions $[\mathrm{Pt}-\mathrm{N} 712.069$ (3) \AA and $\mathrm{Pt}-$ N72 2.071 (3) \AA] $]$ and two P atoms from the triphenylphosphine groups $\left[\begin{array}{lll}\mathrm{Pt}-\mathrm{P} 1 \quad 2.2792(11) \AA & \AA \\ \text { and } & \mathrm{Pt}-\mathrm{P} 2\end{array}\right.$ $2.2685(11) \AA$] in a cis arrangement (Fig. 1). Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$

Figure 1
A view of the molecule of (I) shown with 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms are drawn as small spheres of arbitrary radii.

Figure 2
A stereoview of (I), showing the intramolecular stacking interactions involving the purine and phenyl rings.
hydrogen-bonding interactions are observed involving O 2 , with donor-acceptor distances of 3.065 (6) and 3.184 (6) A. Two rather close contacts are observed between Pt and atoms O61 and O62 adjacent to N71 and N72, with Pt...O61 and $\mathrm{Pt} \cdots \mathrm{O} 62$ distances of 3.234 (4) and 3.284 (4) \AA, respectively.

In theobromine, in contrast with theophylline, the N7 coordination site is blocked by a methyl group, and therefore N 9 is expected to be the preferred coordination site. Such a coordination is found in the only theobromine metal complex structure reported to date, $\mathrm{K}\left[\mathrm{Pt}^{\mathrm{II}}(\mathrm{TB}) \mathrm{Cl}_{3}\right]$ (Crowston et al.,
1986). In complex (II), however, we have now established a structure involving theobrominate anions coordinating to Pt through N 1 in both crystallographically independent molecules. In addition, one Cl^{-}anion and two cis P atoms from triphenylphosphine groups are coordinated to Pt, forming a slightly distorted square-planar coordination geometry (Fig. 3). The metal-ligand distances in molecules 1 and 2, respectively, are $\mathrm{Pt} 1-\mathrm{N} 11 \quad 2.079(5)$ and $\mathrm{Pt} 2-\mathrm{N} 12$ 2.097 (5) $\AA, \mathrm{Pt} 1-\mathrm{Cl} 12.340$ (2) and $\mathrm{Pt} 2-\mathrm{Cl} 22.349(2) \AA$, Pt 1 - P1 2.239 (2) and $\mathrm{Pt} 1-\mathrm{P} 22.2697$ (18) \AA, and $\mathrm{Pt} 2-\mathrm{P} 3$ 2.251 (2) and Pt2-P4 2.2898 (17) \AA. The $\mathrm{Pt}-\mathrm{P}$ distances in (II) trans to the purine ligands are significantly longer (by about $0.04 \AA$) than the corresponding values trans to the Cl atoms in both crystallographically independent molecules; the purine base obviously exhibits a stronger trans influence than the Cl atom.

In both complexes, the $\mathrm{Pt}-\mathrm{N}$ (purine) distances are significantly longer than in corresponding complexes without triphenylphosphine ligands. This may be explained by a lengthening of the $\mathrm{Pt}-\mathrm{N}$ bonds due to the relatively high trans influence of PPh_{3}.

The heterocyclic oxopurine rings are rotated with respect to the coordination plane of the metal by 82.99 (8) and $88.09(8)^{\circ}$ in complex (I), and by 85.91 (16) and 88.14 (18) ${ }^{\circ}$ in complex (II). The maximum deviation of individual purine-ring atoms from the least-squares plane through the nine ring atoms is 0.040 (4) \AA for N 12 in (I) and 0.077 (8) \AA for C 52 in (II),

Figure 3
Views of the two independent molecules of (II) shown with 10% probability displacement ellipsoids and the atom-numbering schemes. H atoms are drawn as small spheres of arbitrary radii and hydrogen-bonding contacts of the disordered ethanol molecules are indicated by dashed lines.
whereas the corresponding maximum deviation for ringsubstituent atoms is 0.256 (7) \AA for C32 in (I) and 0.17 (1) \AA for O 22 in (II).

In both complexes, the structures are stabilized by intramolecular stacking interactions between the purine rings and a phenyl ring of an adjacent triphenylphosphine group (Figs. 2 and 4). The corresponding stacking distances (calculated as the mean distance of all ring atoms of one molecule from the least-squares planes through the stacking molecule) and stacking angles are $3.26 \AA$ and 10.0°, respectively, for molecule 1 , and $3.32 \AA$ and 13.7°, respectively, for molecule 2 in the theophylline complex, (I) (see Fig. 1). In the theobromine complex, (II), the corresponding values are $3.31 \AA$ and 19.9°, respectively, for molecule 1 , and $3.32 \AA$ and 12.0°, respectively, for molecule 2. The hydrogen-bonding contacts for (II) are shown in Fig. 3 and Table 4.

Experimental

Complex (I) was crystallized by adding a suspension of cis$\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](119 \mathrm{mg}, 0.15 \mathrm{mmol})$ in ethanol $(50 \mathrm{ml})$ to a solution of theophylline ($54 \mathrm{mg}, 0.3 \mathrm{mmol}$) in water (5 ml) containing NaOH $(0.3 \mathrm{mmol})$. The reaction mixture was heated to give a clear solution. After slow evaporation at room temperature over a period of one month, colourless plates of (I) were formed. Elemental analysis, found: C 55.40, H 4.27, N 9.99\%; calculated for $\mathrm{C}_{50} \mathrm{H}_{44} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pt}$: C $55.71, \mathrm{H} 4.11, \mathrm{~N} 10.39 \%$. A molecular peak corresponding to $\left[\mathrm{Pt}\left(\mathrm{TP}^{-}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{H}^{+}$at $m / z 1078(2 \%)$ and a peak corresponding to

Figure 4
A stereoview of (II), showing the intramolecular stacking interactions involving the purine and phenyl rings.
$\left[\mathrm{Pt}\left(\mathrm{TP}^{-}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$at $m / z 898$ (43\%) were found in the FAB-MS spectrum. Complex (II) was obtained by adding a suspension of cis$\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](119 \mathrm{mg}, 0.15 \mathrm{mmol})$ in ethanol $(50 \mathrm{ml})$ to a solution of theobromine ($27 \mathrm{mg}, 0.15 \mathrm{mmol}$) in water (5 ml) containing NaOH $(0.3 \mathrm{mmol})$. The reaction mixture was heated to give a clear solution. After slow evaporation over a period of one month at 323 K and subsequent slow addition of a solution of excess NaBF_{4} in $100 \mu \mathrm{l}$ of the main solution, colourless plates of (II) formed. Elemental analysis, found: $\mathrm{C} 54.93, \mathrm{H} 3.99, \mathrm{~N} 5.83 \%$, calculated for $\mathrm{C}_{44} \mathrm{H}_{40} \mathrm{ClN}_{4} \mathrm{O}_{2.5} \mathrm{P}_{2} \mathrm{Pt}: \mathrm{C} 55.20$, H 4.21, N 5.85%. A molecular peak corresponding to $\left[\mathrm{Pt}\left(\mathrm{TB}^{-}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$at $m / z 898(67 \%)$ and a peak corresponding to $\left[\mathrm{PtCl}\left(\mathrm{TB}^{-}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{Na}^{+}$at $m / z 957(4 \%)$ were found in the FAB-MS spectrum.

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$) for (I).

$\mathrm{Pt}-\mathrm{N} 71$	2.069 (3)	N71-C81	1.315 (6)
$\mathrm{Pt}-\mathrm{N} 72$	2.071 (3)	C81-N91	1.341 (6)
$\mathrm{Pt}-\mathrm{P} 2$	2.2685 (11)	N12-C22	1.402 (7)
$\mathrm{Pt}-\mathrm{P} 1$	2.2792 (11)	N12-C62	1.412 (6)
N11-C21	1.401 (6)	N12-C12	1.482 (6)
N11-C61	1.412 (6)	C22-O22	1.226 (6)
N11-C11	1.476 (7)	C22-N32	1.374 (6)
C21-O21	1.225 (6)	N32-C42	1.390 (6)
C21-N31	1.377 (7)	N32-C32	1.460 (6)
N31-C41	1.391 (6)	C42-N92	1.356 (6)
N31-C31	1.462 (6)	C42-C52	1.370 (6)
C41-N91	1.349 (6)	C52-N72	1.390 (5)
C41-C51	1.378 (6)	C52-C62	1.423 (6)
C51-N71	1.395 (5)	C62-O62	1.231 (6)
C51-C61	1.415 (6)	N72-C82	1.326 (5)
C61-O61	1.233 (6)	C82-N92	1.375 (6)
$\mathrm{N} 71-\mathrm{Pt}-\mathrm{N} 72$	87.05 (14)	C21-N31-C41	119.2 (4)
$\mathrm{N} 71-\mathrm{Pt}-\mathrm{P} 2$	174.37 (10)	C81-N71-C51	104.0 (3)
$\mathrm{N} 72-\mathrm{Pt}-\mathrm{P} 2$	87.88 (10)	C81-N91-C41	102.0 (4)
$\mathrm{N} 71-\mathrm{Pt}-\mathrm{P} 1$	87.60 (10)	C22-N12-C62	126.9 (4)
$\mathrm{N} 72-\mathrm{Pt}-\mathrm{P} 1$	174.04 (11)	C22-N32-C42	118.9 (4)
$\mathrm{P} 2-\mathrm{Pt}-\mathrm{P} 1$	97.57 (4)	C82-N72-C52	104.8 (3)
C21-N11-C61	126.1 (4)	C42-N92-C82	101.7 (4)

Table 2
Hydrogen-bonding geometry (${ }_{\mathrm{A}} \mathrm{C}^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4 B-\mathrm{H} 4 B \cdots \mathrm{O} 21^{\mathrm{i}}$	0.95	2.42	$3.065(6)$	125
$\mathrm{C} 10 A-\mathrm{H} 10 A \cdots \mathrm{O} 22^{\mathrm{ii}}$	0.95	2.51	$3.184(6)$	128

Symmetry codes: (i) $1+x, \frac{1}{2}-y, \frac{1}{2}+z$; (ii) $2-x, y-\frac{1}{2}, \frac{3}{2}-z$.

Compound (I)

Crystal data
$\left[\mathrm{Pt}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]$
$M_{r}=1077.96$
Monoclinic, $P 2_{1} / c$
$a=9.7839$ (5) \AA
$b=20.7991(10) \AA$
$c=22.0788$ (12) \AA
$\beta=99.172(6)^{\circ}$
$V=4435.5(4) \AA^{3}$
$Z=4$
$D_{x}=1.614 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8000 reflections
$\theta=2.7-30.3^{\circ}$
$\mu=3.29 \mathrm{~mm}^{-1}$
$T=183$ (2) K
Plate, colourless
$0.27 \times 0.16 \times 0.08 \mathrm{~mm}$

Data collection

Stoe IPDS diffractometer
φ rotation scans
Absorption correction: numerical (Coppens et al., 1965)
$T_{\text {min }}=0.470, T_{\text {max }}=0.779$
52916 measured reflections
13203 independent reflections
9092 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R_{\text {int }}=0.067$
$\theta_{\max }=30.3^{\circ}$
$h=-13 \rightarrow 13$
$k=0 \rightarrow 29$
$l=0 \rightarrow 31$
50 to 200 standard reflections
frequency: 5.8 min
intensity decay: none
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.084$
$S=1.01$
13203 reflections
585 parameters

> H-atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.038 P)^{2}\right]$
> where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.003$
> $\Delta \rho_{\max }=1.42 \mathrm{e}^{-3}$
> $\Delta \rho_{\min }=-3.35 \mathrm{e}^{-3}$

Table 3
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (II).

Pt1-N11	2.079 (5)	Pt2-N12	2.097 (5)
$\mathrm{Pt} 1-\mathrm{P} 1$	2.239 (2)	$\mathrm{Pt} 2-\mathrm{P} 3$	2.251 (2)
$\mathrm{Pt} 1-\mathrm{P} 2$	2.2697 (18)	$\mathrm{Pt} 2-\mathrm{P} 4$	2.2898 (17)
Pt1-Cl1	2.340 (2)	$\mathrm{Pt} 2-\mathrm{Cl} 2$	2.349 (2)
N11-C61	1.369 (7)	N12-C62	1.362 (8)
N11-C21	1.406 (7)	N12-C22	1.401 (8)
C21-O21	1.235 (8)	C22-O22	1.213 (9)
C21-N31	1.395 (7)	C22-N32	1.407 (8)
N31-C41	1.341 (8)	N32-C42	1.331 (9)
N31-C31	1.509 (8)	N32-C32	1.524 (10)
C41-N91	1.376 (8)	C42-N92	1.392 (9)
C41-C51	1.401 (8)	C42-C52	1.397 (10)
C51-N71	1.346 (8)	C52-N72	1.343 (9)
C51-C61	1.439 (7)	C52-C62	1.453 (8)
C61-O61	1.248 (7)	C62-O62	1.243 (8)
N71-C81	1.394 (8)	N72-C82	1.395 (10)
N71-C71	1.433 (8)	N72-C72	1.417 (10)
C81-N91	1.356 (9)	C82-N92	1.327 (11)
$\mathrm{N} 11-\mathrm{Pt} 1-\mathrm{P} 1$	89.67 (19)	$\mathrm{N} 12-\mathrm{Pt} 2-\mathrm{P} 3$	88.52 (18)
$\mathrm{N} 11-\mathrm{Pt} 1-\mathrm{P} 2$	170.62 (17)	$\mathrm{N} 12-\mathrm{Pt} 2-\mathrm{P} 4$	174.13 (19)
$\mathrm{P} 1-\mathrm{Pt} 1-\mathrm{P} 2$	98.54 (7)	$\mathrm{P} 3-\mathrm{Pt} 2-\mathrm{P} 4$	96.96 (7)
$\mathrm{N} 11-\mathrm{Pt} 1-\mathrm{Cl} 1$	86.84 (19)	$\mathrm{N} 12-\mathrm{Pt} 2-\mathrm{Cl} 2$	84.79 (18)
$\mathrm{P} 1-\mathrm{Pt} 1-\mathrm{Cl} 1$	175.07 (8)	$\mathrm{P} 3-\mathrm{Pt} 2-\mathrm{Cl} 2$	173.03 (7)
$\mathrm{P} 2-\mathrm{Pt} 1-\mathrm{Cl} 1$	85.24 (7)	$\mathrm{P} 4-\mathrm{Pt} 2-\mathrm{Cl} 2$	89.79 (7)
C61-N11-C21	125.7 (5)	C62-N12-C22	127.2 (5)
C41-N31-C21	119.5 (6)	C42-N32-C22	117.5 (7)
C51-N71-C81	106.0 (7)	C52-N72-C82	105.2 (7)
C81-N91-C41	101.7 (6)	C82-N92-C42	99.0 (7)

Compound (II)

Crystal data

$\left[\mathrm{PtCl}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]$.
$0.5 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
$M_{r}=957.28$
$Z=4$
$D_{x}=1.589 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$
Mo $K \alpha$ radiation
$a=11.4777$ (9) \AA
$b=19.3276$ (13) \AA
$c=20.5946(17) \AA$
$\alpha=62.565$ (8$)^{\circ}$
$\beta=81.354$ (10) ${ }^{\circ}$
$\gamma=89.019(9)^{\circ}$
Cell parameters from 8000
reflections
$\theta=2.7-29.3^{\circ}$
$\mu=3.70 \mathrm{~mm}^{-1}$
$T=183$ (2) K
Plate, colourless
$0.36 \times 0.18 \times 0.06 \mathrm{~mm}$
$V=4001.7$ (5) \AA^{3}

Data collection

Stoe IPDS diffractometer	$R_{\text {int }}=0.096$
φ oscillation scans	$\theta_{\max }=29.3^{\circ}$
Absorption correction: numerical	$h=-15 \rightarrow 15$
$\quad($ Coppens et al., 1965)	$k=-23 \rightarrow 25$
$\quad T_{\min }=0.350, T_{\max }=0.809$	$l=0 \rightarrow 28$
43394 measured reflections	50 to 200 standard reflections
19993 independent reflections	frequency: 5 min
8805 reflections with $I>2 \sigma(I)$	intensity decay: none

Refinement

Refinement on F^{2}

$$
\mathrm{H} \text { atoms treated by a mixture of }
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.092$
$S=0.69$
19993 reflections
839 parameters

Table 4
Hydrogen-bonding geometry ($\AA,^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O5-H5 . ${ }^{\text {O64 }}$	1.1 (2)	2.1 (2)	2.74 (2)	112 (19)
O6-H6 - O21	1.12 (8)	2.44 (13)	3.089 (17)	115 (13)
$\mathrm{C} 3 A-\mathrm{H} 3 A \cdots \mathrm{Cl} 2$	0.95	2.83	3.549 (4)	133
$\mathrm{C} 3 \mathrm{G}-\mathrm{H} 3 \mathrm{G} \cdots \mathrm{O} 21^{\mathrm{i}}$	0.95	2.54	3.469 (7)	167
$\mathrm{C} 5 E-\mathrm{H} 5 E \cdots \mathrm{Cl} 2^{\text {ii }}$	0.95	2.81	3.511 (5)	131
	0.95	2.21	3.129 (8)	162
$\mathrm{C} 6 L-\mathrm{H} 62 . \cdots \mathrm{Cl} 2$	0.95	2.73	3.428 (5)	131
C49-H49C.. $\mathrm{O61}^{\text {iv }}$	0.98	2.38	2.94 (3)	116
$\mathrm{C} 72-\mathrm{H} 72 \mathrm{~B} \cdots \mathrm{Cl}^{1}{ }^{\text {i }}$	0.98	2.78	3.571 (13)	138

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $1-x,-y, 1-z$; (iii) $2-x, 1-y,-z$; (iv) $x-1, y, z$.
indexing of crystal faces and measurement of the face-to-face distances of the tiny crystal with the aid of a video camera. Four anisotropic displacement parameters of (II) showed max $/ \mathrm{min}$ ratios larger than 3.0 , with a maximum value of 3.70 for atom C 3 H . This may be explained by the low diffracting power and small size of the crystal used, resulting in only 44% observed reflections. For the phenyl rings of (II), rigid-group constraints (AFIX 66 in SHELXL97; Sheldrick, 1997) were used. Ten 1,2- and two 1,3-distance restraints (DFIX) were applied for the purine-ring system of molecule 1 . Similarity restraints were used for the purine-ring system of molecule 2 with the SAME instruction. The ethanol solvent of (II) appeared to be disordered, with very large displacement parameters. Therefore, the site occupancy was started at 0.5 and the atoms were refined with the $P A R T$ instruction. The isotropic displacement parameters of the corresponding C and O atoms were equated using $E A D P$ constraints. The 1,2 - and 1,3 -distance restraints which were applied for the ethanol molecules were based on theoretical calculations. Attempts to localize the hydroxy H 5 and H 6 atoms using AFIX 87/AFIX 83 options, and also using extended difference electron-density calculations that could lead to the expected hydrogen-bonding contacts, were unsuccessful. Therefore, the calculated positions of H 5 and H6 (AFIX 83) were used as a starting set for restraint models of the O5H5 \cdots O61 and O6-H6 \cdots O21 hydrogen-bond contacts using 1,2- and 1,3-distance restraints (DFIX). Many cycles of refinement were necessary for convergence, using the shift-limiting $D A M P$ option. The last cycle of refinement was calculated separately ($D A M P 00$) to obtain the correct standard uncertainties. The final disorder ratio of the ethanol molecules was $60: 40$. All H -atom positions were calculated [except for H 5 and H 6 in (II)] after each cycle of refinement with SHELXL97, using a riding model in both structures, with $\mathrm{C}-\mathrm{H}$
distances in the range $0.95-0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})$ values equal to $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for phenyl and $1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl C atoms.

For both compounds, data collection: IPDS (Stoe \& Cie, 1999); cell refinement: IPDS; data reduction: $X R E D$ in IPDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990) and PLUTON (Spek, 1991); software used to prepare material for publication: SHELXL97.

The authors are grateful to the Swiss National Science Foundation for research grants. We thank Dr Heiko Jacobsen for providing us with the theoretical structural data of the ethanol, which were used for 1,2- and 1,3-restraints in the refinement.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1480). Services for accessing these data are described at the back of the journal.

References

Aoki, K. \& Yamazaki, H. (1980). J. Chem. Soc. Chem. Commun. pp. 186-188. Bloemink, M. J. \& Reedijk, J. (1996). Met. Ions Biol. Syst. 32, 641-685.
Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 10351038.

Cozak, D., Mardhy, A., Olivier, M. J. \& Beauchamp, A. L. (1986). Inorg. Chem. 25, 2600-2606.
Crowston, E. H., Goodgame, D. M. L., Hayman, P. B., Slawin, A. M. Z. \& Williams, D. J. (1986). Inorg. Chim. Acta, 122, 161-168.
Ebisuzaki, Y., Boyle, P. D. \& Smith, J. A. (1997). Acta Cryst. C53, 777-779.
Griffith, E. H. \& Amma, E. L. (1979). J. Chem. Soc. Chem. Commun. pp. 322324.

Kistenmacher, T. J., Szalda, D. J., Chiang, C. C., Rossi, M. \& Marzilli, L. G. (1978). Inorg. Chem. 17, 2582-2584.

Lorberth, J., El-Essawi, M., Massa, W. \& Lahib, L. (1988). Angew. Chem. Int. Ed. Engl. 27, 1160-1161.
Madarasz, J., Bombicz, P., Czugler, M. \& Pokol, G. (2000). Polyhedron, 19, 457-463.
Romerosa, A., Suarez-Varela, J., Hidalgo, M. A., Avila-Roson, J. C. \& Colacio, E. (1997). Inorg. Chem. 36, 3784-3786.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (1990). Acta Cryst. A46, C-34.
Spek, A. L. (1991). PLUTON. University of Utrecht. The Netherlands. Stoe \& Cie (1999). IPDS. Version 2.92. Stoe \& Cie, Darmstadt, Germany. Szalda, D. J., Kistenmacher, T. J. \& Marzilli, L. G. (1976). J. Am. Chem. Soc. 98, 8371-8377.
Whitehead, J. P. \& Lippard, S. J. (1996). Met. Ions Biol. Syst. 32, 687-726.

